Prospects for $H \to \text{Invisible with VBF+MET for }$ Snowmass

B. Diallo, A. Ketevi On behalf of the analysis team

December 17, 2021

VBF+MET: Analysis overview

VBF signal selection

- Two jets with $p_T(j_1/j_2) > 80/50 \text{ GeV}.$
- Small add. jet activity: $p_T(j_3) < 25 \text{ GeV}.$
- Jets in opposite hemispheres.
- $\Delta \eta_{jj} > 3.8$.
- $m_{jj} > 0.8 \text{ TeV}$

EWK veto

• Veto on e^{\pm} and μ^{\pm}

Multijets supression

- MET > 200 GeV.
- $\Delta \phi_{ij} < 2.0$.

Run 2 results

Process	SR	$Z_{\ell\ell}$	$W_{e\nu}$	$W_{\mu\nu}$	$W_{\ell u}$	Fake- e CR		
Tot. bg.	15490 ± 130	2065 ± 44	6288 ± 75	11130 ± 110	17420 ± 150	4300 ± 66		
$\begin{array}{c} H \ (\mathrm{VBF}) \\ H \ (\mathrm{ggF}) \\ H \ (\mathrm{VH}) \end{array}$	647 ± 52 90 ± 43 0.81 ± 0.14	Predicted signal for $\mathcal{B}_{inv} = 13\%$ (observed limit)						
Data	15511	2050	6 323	11 095	17418	4 293		

- Best observed (expected) limit 95% CL on branching ratio to invisible final states: 0.13 (0.13).
- Paper- draft https://cds.cern.ch/record/2789616/

Observed	Expected	$+1\sigma$	-1σ	$+2\sigma$	-2σ
0.132	0.132	0.183	0.095	0.248	0.071

Table 1: Expected and observed limits on \mathcal{B}_{inv} for H=125 GeV at 95% CL with 139 fb⁻¹.

Study goal for Snowmass

Goal

- Projection of the current analysis in the LHC High Lumi (HL) condition.
- This required:
 - A better understanding of signal and background.
 - Good estimation of the systematics.

Ongoing Activities for HL-Projection study

- Smearing study.
- Limit projection.
- Multijet background estimate.
- The multijet backgrounds projection study is completed.
- The results have been already presented to the Physics Upgrade meeting: https://indico.cern.ch/event/1051932/.

Smearing study

Strategy

- Conduct a series of truth smearing to depict the detector in the HL-LHC condition.
- Truth level information is fed through a simulation of the upgraded detector.
 - → By making use of the performance function for high pileup conditions: https://twiki.cern.ch/twiki/bin/viewauth/ AtlasProtected/UpgradePerformanceFunctions
- Objects that are smeared:
 - $\rightarrow e^{\pm}, \gamma, \mu^{\pm}, \nu, jets.$

Smearing validation

- For validation we compare:
 - Smeared and reconstructed variables.
 - 2 Smeared and reconstructed cut-flow.
- After validation \Rightarrow reweighting to 14 TeV.
- The smearing validation for VBF125 signal samples has been presented also to the physics upgrade meeting: https://indico.cern.ch/event/1093739/.

Systematic uncertainties projection to HL/LHC conditions

- Expected uncertainty on the integrated luminosity in Full HL-LHC $\sim 1~\%$.
- Expected up to $\sim 2\%$ on the systematics uncertainty.
- Fit to data control region and signal region by scaling down with the projected systematics uncertainties.
- The projection of the systematics uncertainty can be fond in here: https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/HighLumiLhcSystematics2018

Limit projection to HL-LHC conditions

Approach

- Scaled background and signal prediction as a function of luminosity.
- Estimate the sensitivity at higher luminosity conditions.
- Two different cases are considered for now:
 - data Stats only.
 - data statistics + 0.5*theo systematics.

- For the 3000 fb^{-1} .
 - With correlated theory + MJ: 1.9% mjj shape fit ⇒ 2.1%, with reco systematics in the optimistic scenario.
 - For the non-shape fit (bin-by-bin NFs), the 2.8% ⇒ 3.1% with reco systematics.

Upper Limit on Higgs to Invisible

Thanks for your attention

Thanks for your attention.